1. Let $f(x)=x^{3}$ on $[0,1]$ and let \mathcal{P}_{n} be the arithmetic partition that splits $[0,1]$ into n equal subintervals.

Evaluate $U\left(\mathcal{P}_{n}, f\right)$ and $L\left(\mathcal{P}_{n}, f\right)$.
Thus show that f is Riemann integrable on $[0,1]$ and find the value of

$$
\int_{0}^{1} x^{3} d x
$$

You may need to recall $\sum_{i=1}^{n} i^{3}=n^{2}(n+1)^{2} / 4$.
2. i) Integrate $f(x)=x^{2}$ over [1,2] by using the arithmetic partition of $[1,2]$ into n equal subintervals.
ii) Integrate $f(x)=x^{2}$ over [1,2] by using the geometric partition

$$
\mathcal{Q}_{n}=\left\{1, \eta, \eta^{2}, \eta^{3}, \ldots, \eta^{n}=2\right\},
$$

where η is the $n^{\text {th }}$-root of 2 .
3. Integrate $f(x)=1 / x^{3}$ over $[2,3]$ by using the geometric partition

$$
\mathcal{Q}_{n}=\left\{2,2 \eta, 2 \eta^{2}, 2 \eta^{3}, \ldots, 2 \eta^{n}=3\right\}
$$

where η is the $n^{\text {th }}$-root of $3 / 2$.
4. i) If the function $h:[a, b] \rightarrow \mathbb{R}$ is bounded, Riemann integrable and satisfies $h(x) \geq 0$ for all $x \in[a, b]$, show that

$$
\int_{a}^{b} h(x) d x \geq 0
$$

Hint What does $h(x) \geq 0$ for all $x \in[a, b]$ say about any Lower Sum? What does it then say about the Lower Integral of h ? Use also the fact that h is Riemann integrable implies that the lower and upper integrals both exist and are equal.
ii) Prove that if the functions f and g, are bounded on $[a, b]$, and satisfy $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\underline{\int_{a}^{b}} f \leq \underline{\int_{a}^{b}} g \text { and } \overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g .
$$

iii) Prove that if the Riemann integrable functions f and g satisfy $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

5. Integrate $f(x)=x^{2}-x$ over $[2,5]$ by using
i) the arithmetic partition of $[2,5]$ into n equal length subintervals and
ii) the geometric partition of $[2,5]$ into n intervals.
6. Definition If f is continuous on (a, b) and F is continuous on $[a, b]$ and and differentiable on (a, b) with $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$ then F is a primitive for f.
Find primitives for
(i) $\frac{1}{\sqrt{1-x^{2}}}$,
(ii) $\frac{x}{\sqrt{1-x^{2}}}$,
(iii) $\frac{1}{\sqrt{1+x^{2}}}$.
iv) $\frac{x}{\sqrt{1+x^{2}}}$,
v) $\frac{1}{1+x^{2}}$,
vi) $\frac{x}{1+x^{2}}$.
7. The Fundamental Theorem of Calculus says, in part, that if f is continuous on (a, b) then $F(x)=\int_{a}^{x} f(t) d t$ is a primitive for $f(x)$ on (a, b).
Prove that $\ln x$, defined earlier as the inverse of e^{x}, satisfies

$$
\ln x=\int_{1}^{x} \frac{d t}{t}
$$

for all $x>0$.
Hint: Find two primitives for $f:(0, \infty) \rightarrow \mathbb{R}, x \longmapsto 1 / x$ and note that primitives are unique up to a constant.

Additional Questions

8. Integrate $f(x)=x^{2}-6 x+10$ over [2,5] using the arithmetic partition of $[2,5]$ into $3 n$ equal length subintervals.

Note how we look at $\mathcal{P}_{3 n}$ and not \mathcal{P}_{n}, ask yourself why.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(0)=0$ and, for $x \in(0,1]$,

$$
f(x)=\frac{1}{n} \text { where } n \text { is the largest integer satisfying } n \leq \frac{1}{x} .
$$

Draw the graph of f. Show that f is monotonic on $[0,1]$.
Deduce that f is Riemann integrable on $[0,1]$.
Find

$$
\int_{0}^{1} f
$$

Hint. First calculate the integral over $[1 / N, 1]$ for any $N \geq 1$. Then use this in evaluating the upper and lower integrals of f over $[0,1]$.

