1. Let $f(x) = x^3$ on [0, 1] and let \mathcal{P}_n be the arithmetic partition that splits [0, 1] into *n* equal subintervals.

Evaluate $U(\mathcal{P}_n, f)$ and $L(\mathcal{P}_n, f)$.

Thus show that f is Riemann integrable on [0, 1] and find the value of

$$\int_0^1 x^3 dx.$$

You may need to recall $\sum_{i=1}^{n} i^3 = n^2 (n+1)^2/4$.

- 2. i) Integrate $f(x) = x^2$ over [1, 2] by using the arithmetic partition of [1, 2] into n equal subintervals.
 - ii) Integrate $f(x) = x^2$ over [1, 2] by using the geometric partition

$$Q_n = \{1, \eta, \eta^2, \eta^3, ..., \eta^n = 2\},\$$

where η is the n^{th} -root of 2.

3. Integrate $f(x) = 1/x^3$ over [2, 3] by using the geometric partition

$$Q_n = \{2, 2\eta, 2\eta^2, 2\eta^3, ..., 2\eta^n = 3\},\$$

where η is the n^{th} -root of 3/2.

4. i) If the function $h: [a, b] \to \mathbb{R}$ is bounded, Riemann integrable and satisfies $h(x) \ge 0$ for all $x \in [a, b]$, show that

$$\int_{a}^{b} h(x) \, dx \ge 0.$$

Hint What does $h(x) \ge 0$ for all $x \in [a, b]$ say about any Lower Sum? What does it then say about the Lower Integral of h? Use also the fact that h is Riemann integrable implies that the lower and upper integrals both exist and are equal. ii) Prove that if the functions f and g, are bounded on [a, b], and satisfy $f(x) \leq g(x)$ for all $x \in [a, b]$, then

$$\underline{\int_{a}^{b}} f \leq \underline{\int_{a}^{b}} g$$
 and $\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g$.

iii) Prove that if the Riemann integrable functions f and g satisfy $f(x) \leq g(x)$ for all $x \in [a, b]$, then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

- 5. Integrate $f(x) = x^2 x$ over [2, 5] by using
 - i) the arithmetic partition of [2, 5] into n equal length subintervals and
 - ii) the geometric partition of [2, 5] into n intervals.
- 6. Definition If f is continuous on (a, b) and F is continuous on [a, b]and and differentiable on (a, b) with F'(x) = f(x) for all $x \in (a, b)$ then F is a **primitive** for f.

Find primitives for

(i)
$$\frac{1}{\sqrt{1-x^2}}$$
, (ii) $\frac{x}{\sqrt{1-x^2}}$, (iii) $\frac{1}{\sqrt{1+x^2}}$
iv) $\frac{x}{\sqrt{1+x^2}}$, v) $\frac{1}{1+x^2}$, vi) $\frac{x}{1+x^2}$.

7. The Fundamental Theorem of Calculus says, in part, that if f is continuous on (a,b) then $F(x) = \int_a^x f(t) dt$ is a primitive for f(x) on (a,b).

Prove that $\ln x$, defined earlier as the inverse of e^x , satisfies

$$\ln x = \int_1^x \frac{dt}{t}$$

for all x > 0.

Hint: Find two primitives for $f: (0, \infty) \to \mathbb{R}, x \mapsto 1/x$ and note that primitives are unique up to a constant.

Additional Questions

8. Integrate $f(x) = x^2 - 6x + 10$ over [2, 5] using the arithmetic partition of [2, 5] into 3n equal length subintervals.

Note how we look at \mathcal{P}_{3n} and not \mathcal{P}_n , ask yourself why.

9. Let $f: [0,1] \to \mathbb{R}$ be given by f(0) = 0 and, for $x \in (0,1]$,

$$f(x) = \frac{1}{n}$$
 where n is the largest integer satisfying $n \leq \frac{1}{x}$.

Draw the graph of f. Show that f is monotonic on [0, 1].

Deduce that f is Riemann integrable on [0, 1].

Find

$$\int_0^1 f.$$

Hint. First calculate the integral over [1/N, 1] for any $N \ge 1$. Then use this in evaluating the upper and lower integrals of f over [0, 1].